Delft University of Technology			
DEPARTMENT OF AEROSPACE ENGINEERING			
Course: Ae2-125;	Course year: 2		
Date: Thursday 25 th June 2009	Time: 14.00–17.00		
Answers are expected in English			

- Consider the supersonic air flow between two parallel walls at M_{∞} =2.2 with p_{∞} =45kPa and T_{∞} =182K. A positive deflection of 24° is imposed on one of the walls.
 - 6 (i) Draw the waves produced by the deflection and the interaction with the opposite wall. On the same drawing also draw the flow streamlines.
- Galculate the following flow properties past the reflected wave: Mach number, static and total pressure, total temperature, entropy (w.r.t. free stream conditions).
- Calculate the maximum deflection angle beyond which a Mach reflection will occur instead of the regular reflection.
- A supersonic flow at $M_{\infty}=3.2$ expands around a convex corner. What is the maximum turning angle θ ? What will be the velocity reached by the flow after such expansion? (Assume air with $p_{\infty}=50$ kPa and $T_{\infty}=380$ K)

34 Problem 2

- Air flows through a convergent-divergent channel with throat area A_i =350cm². The exit area is A_e =600cm². A pressurised reservoir with P_0 =700kPa is connected to the nozzle. Determine:
 - 6 (i) the Mach number at the exit M_e when the exit pressure is $P_e=100$ kPa
 - 6 (ii) the maximum static pressure at the exit below which the mass flow is constant
 - 6 (iii) the range of static pressure at the exit in which oblique shocks emanate from the edge of the nozzle
 - Consider a diamond shaped symmetrical airfoil with thickness to cord ratio t/c=0.1 flying at Mach 3.0 and with zero angle of attack. Compare the drag coefficient calculated with shock-expansion theory and that obtained with linearized supersonic flow.

Appendix

Specific gas constant for air: R=287.04J/kg K

Specific heat ratio for air: $\gamma=1.4$

Delft University of Technology			
DEPARTMENT OF AEROSPACE ENGINEERING			
Course: Ae2-125;	Course year: 2		
Date: Thursday 25 th June 2009	Time: 14.00–17.00		
Answers are expected in English			

- Consider the supersonic air flow between two parallel walls at M_{∞} =2.2 with p_{∞} =45kPa and T_{∞} =182K. A positive deflection of 24° is imposed on one of the walls.
 - 6 (i) Draw the waves produced by the deflection and the interaction with the opposite wall. On the same drawing also draw the flow streamlines.
- Galculate the following flow properties past the reflected wave: Mach number, static and total pressure, total temperature, entropy (w.r.t. free stream conditions).
- Calculate the maximum deflection angle beyond which a Mach reflection will occur instead of the regular reflection.
- A supersonic flow at $M_{\infty}=3.2$ expands around a convex corner. What is the maximum turning angle θ ? What will be the velocity reached by the flow after such expansion? (Assume air with $p_{\infty}=50$ kPa and $T_{\infty}=380$ K)

34 Problem 2

- Air flows through a convergent-divergent channel with throat area A_t =350cm². The exit area is A_e =600cm². A pressurised reservoir with P_0 =700kPa is connected to the nozzle. Determine:
 - 6 (i) the Mach number at the exit M_e when the exit pressure is $P_e=100$ kPa
 - 6 (ii) the maximum static pressure at the exit below which the mass flow is constant
 - 6 (iii) the range of static pressure at the exit in which oblique shocks emanate from the edge of the nozzle
 - Consider a diamond shaped symmetrical airfoil with thickness to cord ratio t/c=0.1 flying at Mach 3.0 and with zero angle of attack. Compare the drag coefficient calculated with shock-expansion theory and that obtained with linearized supersonic flow.

Appendix

Specific gas constant for air: R=287.04J/kg K

Specific heat ratio for air: 7=1.4

12a) Consider a thermally insulated compressor (fig. 1). The mass flow of air through the compressor is 1.5kg/s following a transformation from state 1 to 2, identified by the following state variables $T_1 = 25$ °C, $p_1 = 1$ bar, $T_2 = 300$ °C, $p_2 = 5$ bar.

3 i) determine the power required by the compressor;

(3 ii) verify that the transformation followed by the gas is irreversible;

3 iii) represent the transformation 1-2 in the T-s plane;

3 iv) determine the power that would have been required by the compressor in the case of an isentropic compression from the same initial state to the same final pressure.

Fig. 1 – compressor schematics.

Consider a rigid and thermally insulated tank, divided into two parts, A and B, separated by a wall (fig. 2). Each part has a volume of 1m³. Part A and part B initially contain the same mass m_{A,in}=m_{B,in}=1kg of air. The air initial temperature is 100°C in part A and 20°C in part B. Heat can be transferred through the wall but mass flow is allowed.

Fig. 2 - tank initial configuration

4 i) determine temperature and pressure in both parts A and B at the end of the transformation;

3 ii) is the transformation reversible? Motivate your answer;

- iii) determine the air final temperature in both parts A and B in the case where $m_{A,in}=2 \cdot m_{B,in}$. What would have been the air final temperature, in A and B, in the case that $m_{A,in}>>m_{B,in}$?
- (O c) Answer the following questions on perpetual motion machines:
- 5 i) In order to achieve a more sustainable transport system, a variant of the SUPERBUS (electrically powered road vehicle) is imagined where a windmill is mounted on its roof. The energy captured by the windmill when the vehicle travels at a given speed is used to power its electrical engine. It is claimed that the vehicle can travel only powered by the windmill. Is this a perpetual motion machine? If yes, of I or II type? Motivate the answer.
- 5 ii) A pendulum of mass M is put initially in oscillatory motion. At each oscillation the pendulum hits a wheel keeping it in rotation. The wheel drives a dynamo, which powers a bulb light. It is claimed that once the pendulum is put in oscillation, this device will produce electricity for ever. Is this a perpetual motion machine? If yes, of I or II type? Motivate your answer.

problem 4. reflected osw α). (i) 9 05Wy Flow deflection from 1 to 2 is the same ous @ to 3 8₁₂ = 8₂₃ (ii) $M_1 = 2.2$ 0 = 24° ~ B = 55° with these conditions a reflected shock is not Po2/Po1 = 0.81 possible - Mach reflection To_ = To, = To 21+ +-1 12 = 350 K Poz = Poz · Pod 1+ + - 1 7 = 389 kpa. $S_2 - S_1 = -R \ln \left\{ \frac{Po_2}{Po_1} \right\} = 26.3 \frac{D}{k_0 K}$

Mach reflection:

Mach reflection will $\theta_{12} = \theta_{23}$ there is he	occur when for a given of OSW possible at M2	,
Assume: $\theta_{12} = 10^{\circ}$ $M_1 = 2.2$	$P_{2} = 36^{\circ}$ $M_{2} = 4.82$ $P_{3} = 43.5^{\circ}$ $P_{23} = 40^{\circ}$ $P_{3} = 43.5^{\circ}$ $P_{3} = 43.5^{\circ}$ $P_{4} = 43.5^{\circ}$ $P_{5} = 43.5^{\circ}$	ગ્રહ
D, 2 may be larger		
Assume: $\theta_{12} = 18^{\circ}$ $M_{1} = 2.2$	$\beta_2 = 45^{\circ}$ $M_2 = 1.5$ β_3 not possible $\theta_{23} = 45^{\circ}$ possible Track regle	
Diz must be smaller		
Aroume: $\theta_{12} = 15^{\circ}$ $\Pi_{1} = 2.2$	$\beta_{2} = 41.3^{\circ}$ $12 = 1.62$ $\beta_{3} = 63^{\circ}$ $\theta_{23} = 15^{\circ}$ regular reflecto	
Diz may be a bit longs	24	
Assume: $\theta_{12} = 16^{\circ}$ $\pi_{1} = 2.2$	$B_{2} = 42.5^{\circ}$ $R_{2} = 1.58$ $B_{23} = 10^{\circ}$ $B_{23} = 10^{\circ}$	2
	Assume: $\theta_{12} = 10^{\circ}$ $M_{1} = 2.2$ θ_{12} may be larger Assume: $\theta_{12} = 18^{\circ}$ $M_{1} = 2.2$ θ_{12} must be smaller Assume: $\theta_{12} = 15^{\circ}$ $M_{1} = 2.2$ θ_{12} may be a boit large	Assume: $\theta_{12} = 48^{\circ}$ $\theta_{23} = 45^{\circ}$ Assume: $\theta_{12} = 48^{\circ}$ $\theta_{23} = 45^{\circ}$ Possible Pach regletion and Pach regletion are $\theta_{12} = 15^{\circ}$ $\theta_{12} = 15^{\circ}$ $\theta_{13} = 15^{\circ}$ $\theta_{23} = 15^{\circ}$ $\theta_{23} = 15^{\circ}$ Pagetor regletion $\theta_{12} = 15^{\circ}$ $\theta_{23} = 15^{\circ}$ $\theta_{23} = 15^{\circ}$ $\theta_{23} = 15^{\circ}$

D Roch re flection occurs somewhere between $\theta = 15^{\circ}$ and $\theta = 16^{\circ}$ degrees

Problem 1 b)

Maximum turning angle when M-D co.

lim
$$V(\Pi) = \lim_{M \to \infty} \sqrt{\frac{1}{\delta^{-1}}} \cdot \operatorname{atom} \sqrt{\frac{1}{\delta^{-1}}} \left(\Pi^2 - 1 \right) - \operatorname{atom} \left(\sqrt{\Pi^2 - 1} \right)$$

$$\mathcal{D}_{\text{max}} = \frac{11}{2} \left(\sqrt{\frac{d+1}{d-1}} - 1 \right)$$

Or take maximum index in table
$$V(\pi = 50) = 124.7^{\circ}$$

Nax turning ougle =
$$0 = 130.5^{\circ} - 53.5^{\circ} = 77^{\circ}$$

Maximum velocity:

$$V_{\text{max}} = \sqrt{2} G T_{t} = 1525 \text{ m/s}.$$
 [$C_{p}T + \frac{V^{2}}{2} = C_{p}T_{t}$]

<u>a</u>)

(i) Fully subsonic flow: (I)

$$\left(\frac{P}{P_0}\right) = 0.912.$$

Fully supersonic flas: (I)

$$\left(\frac{P}{P_0}\right)_{TC} = 0.124$$

Normal shock at the exit

$$\left(\frac{P}{P_0}\right)_{\overline{\Pi}} = \left(\frac{P}{P_0}\right)_{\overline{\Pi}} \cdot \frac{P_2}{P_1} = 0.124 \cdot 4.59 = 0.56$$

In this case: $\frac{P}{P_o} = \frac{1}{7}$ up $\left(\frac{P}{P_o}\right)_{\text{II}} < \frac{P}{P_o} < \left(\frac{P}{P_o}\right)_{\text{II}}$

no Oblique shocks at the exit the

Thospore Me = 2

(ii) Chocked flow:
$$\frac{P}{P_o} < (\frac{P}{P_o})_{I}$$

~ P < 0.912.700 = 638 KPa.

iii) Oblique shocks when:
$$(\frac{P}{P_o})_{\text{II}} (\frac{P}{P_o})_{\text{II}}$$

DSW

$$\Pi_{0} = 3$$
 $\theta_{0} = 5.7^{\circ}$
 $\Pi_{1} = 2.7^{\circ}$
 $P_{1/P_{0}} = 1.53$

PM EXP.

$$M_1 = 2.7$$
. $(D_2 = D_1 + \theta_{12} = 43.6 + 11.4 = 55$
 $\theta_{12} = 2.5.7 = 11.4^{\circ})$ $M_2 = 3.3$
 $P_2/P_1 = 0.41$ $\frac{P_2}{P_0} = 0.41.1.53 = 0.63$

$$\underline{C_{p}} = \left(\frac{P_{1}}{P_{o}} - \frac{P_{2}}{P_{o}}\right) \frac{2.t}{+ \pi_{o}^{2}.c} = 0.0143$$

Linearized theory

$$C_{P_1} = 0.070$$
 $C_{P_2} = -0.070$

$$C_{\mathbf{p}} = 2 - \frac{1}{2} \cdot C_{\mathbf{p}_1} \cdot \frac{1}{2} - 2 \cdot \frac{1}{2} \cdot C_{\mathbf{p}_2} \cdot \frac{1}{2} = 0.0141$$

Problem 30:

$$Cp := 1004 \frac{J}{kg \cdot K}$$

$$m \cdot dot := 1.5 \frac{kg}{s} \qquad \gamma := 1.4$$

$$Cv := \frac{Cp}{\gamma}$$
on:

$$T1 := (25 + 273.15)K$$

$$T2 := (300 + 273.15)K$$

$$Cv := \frac{C_1}{v}$$

Work associated to the expansion transformation:

$$W12 := Cp \cdot (T2 - T1)$$

$$W12 = 2.761 \times 10^5 \, Sv$$

Power required

$$Wdot := mdot \cdot W12$$

$$Wdot = 4.141 \times 10^5 W$$

Entropy increase:

Since ds>=dg/T and dg=0, for the transformation to be irreversible it must be Δ s>0 as it is indeed the case:

$$\Delta s := C p \cdot ln \left(\frac{T2}{T1}\right) - R \operatorname{airln} \left(\frac{p2}{p1}\right)$$

$$\Delta s = s2 - s1$$

$$\Delta s = 194.486 \frac{m^2}{\text{K} \cdot \text{s}^2}$$

Final temperature corresponding to an isentropic transformation.

$$T2is := T1 \cdot \left(\frac{p2}{p1}\right)^{\gamma}$$

$$T2is = 472.216K$$

$$\frac{\gamma - 1}{\gamma}$$
T2is := T1 · $\left(\frac{p2}{p1}\right)^{\gamma}$
T2is = 472.216K
T2is - 273.15K = 199.066K Remark T2is < T2

Work associated to the isentropic expansion transformation:

W12is:=
$$Cp^{*}(T2is - T1)$$
 W12is = 1.748 × 10⁵ Sv

Power required

$$Wdot_is := mdot \cdot W12is \quad Wdot_is = 2.621 \times 10^5 W$$

Isentropic efficiency

$$\eta s := \frac{\text{T2is} - \text{T1}}{\text{T2} - \text{T1}}$$
 $\eta s = 0.633$

Problem 35:

$$VA := 1m^3$$
 $TAin := (100 + 273.1)K$ $mAin := 1kg$ $mAfin := mAin$

$$VB := 1m^3$$
 $TBin := (20 + 273.1)K$ $mBin := 1kg$ $mBfin := mBin$

$$pAin := \frac{mAin Rair TAin}{VA}$$
 $\frac{pAin}{1000} = 107.041 Pa$

$$pBin := \frac{mBinrRairTBin}{VB}$$
 $\frac{pBin}{1000} = 84.092 Pa$

Determination of the air density:

The densities remain constant since there is no mass transfer through the membrane, hence

$$\rho Ain = \rho Afin \quad \text{where} \qquad \rho Ain := \frac{mAin}{VA} \qquad \rho Ain = 1 \frac{kg}{m}$$

$$\rho Afin := \rho Afin \qquad \rho Afin := \rho Afi$$

$$\rho Bin = \rho Bfin \quad \text{where} \qquad \rho Bin := \frac{mBin}{VB} \qquad \rho Bin = 1 \ \frac{kg}{m^3} \qquad \rho Bfin := \rho Bin$$

Determination of Tfin:

(mAfin+ mBfin)·Tfin= mAin·TAin+ mBin·TBin hence

Tfin =
$$\frac{\text{(mAin TAin + mBin TBin)}}{\text{(mAfin + mBfin)}}$$
 which in the present case is equivalent to
$$Tfin = \frac{1}{2} \cdot (TAin + TBin)$$

Tfin:=
$$\frac{\text{mAinTAin} + \text{mBinTBin}}{2}$$

Tfin – 273.1 K = 60 KDetermination of the air final pressure :

pAfin :=
$$\rho$$
Afin Rair Tfin
$$\frac{pAfin}{1000} = 95.566 \,\text{Pa}$$
 pAfin - ρ Ain = -1.147 × 10⁴ Pa note : ρ Afin < ρ Ain

pBfin:=
$$\rho$$
BfinRairTfin
$$\frac{pBfin}{1000} = 95.566 \, Pa$$

$$pBfin - pBin = 1.147 \times 10^4 \, Pa$$

$$note: pAfin < pAin$$

5

Entropy increase:

Considering the system comprising both parts A and B, since dS>=dQ/T and dQ=0, for the transformation to be irreversible it must be Δ S>0 as it is indeed the case :

$$\Delta S = Sfin - Sin$$

Sfin= mAfinsfin+ mBfinsBfin

Sin = mAin sin + mBin sBin

 $\Delta S = mAin(sAfin - sAin) + mBin(sBfin - sBin) = mAin\Delta sA + mBin\Delta sB$

$$\Delta sA := Cp \cdot ln \left(\frac{Tfin}{TAin} \right) - Rair ln \left(\frac{pAfin}{pAin} \right)$$

$$\Delta sB := Cp \cdot ln \left(\frac{Tfin}{TBin}\right) - Rairln \left(\frac{pBfin}{pBin}\right)$$

 $\Delta S := mAin \Delta sA + mBin \Delta sB$

$$\Delta S = 10.413 \frac{\text{m}^2 \cdot \text{kg}}{\text{K} \cdot \text{s}^2}$$

The transformation is indeed irreversible.

In the case mAin=2*mBin:

$$Tfin1 := \frac{2mBirrTAin + mBirrTBir}{2mBfirr + mBfirr}$$

Tfin1 = 346.483K

Tfin1 - 273.15K = 73.333K

Tfin1 - Tfin = 13.333 K

$$\frac{Tfin}{TAin} \cdot 100 = 89.28$$

$$\frac{\text{Tfinl}}{\text{TAin}} \cdot 100 = 92.854$$

In the case mAin>>mBin:

$$Tfin2 := \frac{100mBinTAin + mBinTBin}{100mBfin + mBfin}$$

Tfin2 = 372.358K

Tfin2 - 273.15K = 99.208K Tfin2 - Tfin = 39.208K

$$\frac{Tfin2}{TAin} \cdot 100 = 99.788$$

Just for fun:

$$Tfinal(\xi) := \frac{\xi \cdot TAin + TBin}{\xi + 1} \qquad \qquad \xi = \frac{mA}{mB}$$

$$x := 1, 1 + \frac{1}{100} .. 100$$

We could even ask them, which is the value of the ratio mA/mB for whih the final temperature equals 95% of the initial temperature of the gas in the part A. Stai ridendo?