Aerodynamics C - Exam January 2005 Problems

1 Engine Intake of an Aircraft

- 1. Consider the air flow through the engine-intake of an aircraft flying at Mach 4 at an altitude of 10000m ($p = 2.65 \cdot 10^4 N/m^2$, T = 223K). The intake has a protruding wedge which deflects the flow by 30°. The flow is further decelerated to the subsonic regime with a normal shock wave that follows the first shock.
 - (a) Draw a schematic of the intake geometry, including flow streamlines and shock waves.
 - (b) Determine the value of the pressure and the temperature in the subsonic flow region where it is assumed that M = 0.2.
- 2. Determine the value of the specific heat ratio γ for Helium (*He*), Nitrogen (*N*₂) and Carbon Dioxide (*CO*₂) at ambient conditions. (Hint: $\gamma = (n+2)/n$ where *n* is the number of degrees of freedom of the molecular motion).

2 Designing a Supersonic Wind Tunnel

- 1. We need to design a supersonic wind tunnel reproducing at M = 2.8 free-stream flow. The cross section of the test section area is $A_{test} = 1m^2$. The air in the reservoir is at ambient temperature $T_0 = 280K$.
 - (a) Determine the nozzle throat cross section $A_{t,1}$.
 - (b) Determine the total pressure in the reservoir P_0 and the mass flow \dot{m} through the nozzle in the hypothesis that the nozzle discharges the air directly in the ambient $(p_{amb} = 1atm, T_{amb} = 280K)$ at supersonic conditions and without any shock.
 - (c) A supersonic diffuser is placed behind the test section. Now the flow is decelerated through a normal shock wave at $M_{shock} = 2.8$. Determine the diffuser throat minimum cross section $A_{t,2}$, the minimum total pressure P_0 in the reservoir and the mass flow through the wind tunnel.
- 2. Consider air at a pressure of 0.3atm. Calculate the values of the isothermal compressibility τ_T and isentropic compressibility τ_S expressing them in SI units.

3 Analyzing a Supersonic Airfoil

1. A semi convex airfoil is immersed in a uniform supersonic flow at Mach $M_{\infty} = 2.5$ with an incidence angle $\alpha = 3$ degrees, as is shown in figure 1.

The upper surface has the following equation with respect to the body system of reference:

$$y = -\frac{4hx^2}{c^2} + \frac{4hx}{c},$$
 (0.1)

where h/c = 0.02. The lower surface is flat. Determine:

- (a) The pressure coefficient distribution $C_p(x)$ on the bottom and top side of the airfoil.
- (b) The airfoil lift coefficient C_L .
- (c) The airfoil drag coefficient C_d .
- 2. Give the definition of the critical Mach number M_{cr} for an airfoil.

Figure 1: The airfoil corresponding to this question.