Drag and 3D wings

1 Definitions

 $D_{profile}$ = Profile drag (N) $D_{friction} =$ Friction drag (N) $D_{pressure}$ = Pressure (N) $c_{d,profile}$ = Profile drag coefficient for unit length (dimensionless) $c_{d,f}$ = Friction drag coefficient for unit length (dimensionless) $c_{d,p}$ = Pressure drag coefficient for unit length (dimensionless) $D_{wave} =$ Wave drag (N) $D = \text{Total drag } (N)$ $c_{d,w}$ = Wave drag coefficient for unit length (dimensionless) c_d = Drag coefficient for unit length (dimensionless) α = Angle of attack (deg) α_{eff} = Effective angle of attack (deg) α_i = Induced angle of attack (rad) $D_i = \text{Induced drag}(N)$ $L = \text{Lift}(N)$ $C_L =$ Lift coefficient (dimensionless) $A =$ Aspect ratio (dimensionless) $b =$ Wing span (m) $c =$ Wing chord length (m)

 $S =$ Wing area $(m²)$

 $q_{\infty} =$ Dynamic pressure in free-stream $(Pa = N/m^2)$

 $e =$ Span effectiveness ratio (sometimes also called Oswald factor) (dimensionless)

2 Drag types for 2D airfoils

There are three important types of drag in aerodynamics. Skin friction drag has already been discussed in a previous chapter, and so does pressure drag due to flow separation. Together these two types of drag form the profile drag. In formula:

$$
D_{profile} = D_{friction} + D_{pressure} \tag{2.1}
$$

$$
c_{d,profile} = c_{d,f} + c_{d,p} \tag{2.2}
$$

But there is another type of drag, called wave drag. This is caused by shock waves, which are caused by supersonic velocities. So the total drag is:

$$
D = D_{wave} + D_{profile} = D_{wave} + D_{friction} + D_{pressure}
$$
\n(2.3)

$$
c_d = c_{d,w} + c_{d,f} + c_{d,p} \tag{2.4}
$$

3 Induced Drag

Induced drag doesn't occur in 2-dimensional airfoils. In 3-dimensional airfoils it does appear. And since airplanes have 3-dimensional airfoils, it plays an important role. It usually occurs that the local flow direction of the air differs from the relative wind. Therefore the effective angle of attack α_{eff} is smaller than the geometric angle of attack α . Their difference is α_i , the induced angle of attack. In formula:

$$
\alpha_i = \frac{\pi}{180} (\alpha - \alpha_{eff}) \tag{3.1}
$$

Note that a conversion factor is necessary. This is because α_i is in radians (this is necessary for equation 3.3), while the normal angle of attack is in degrees.

Geometrically it can be shown that:

$$
D_i = L \sin \alpha_i = L \alpha_i \tag{3.2}
$$

The latter part of the equation is an approximation, since α_i is very small, and therefore $\sin \alpha_i \approx \alpha_i$. For elliptical lift distribution, which is often approximately the case for airplanes, the following formula is true for incompressible flows:

$$
\alpha_i = \frac{C_L}{\pi A} \tag{3.3}
$$

Where the aspect ratio A is equal to the 'slenderness' of the wing $\frac{b}{c}$. However, c is not constant along the wing, so aerodynamicists therefore have defined the aspect ratio as:

$$
A = \frac{b^2}{S} \tag{3.4}
$$

Combining previous equations results in:

$$
D_i = L\frac{C_L}{\pi A} = q_\infty S \frac{C_L^2}{\pi A} \tag{3.5}
$$

So now the induced drag coefficient can be found:

$$
C_{D,i} = \frac{C_L^2}{\pi A} \tag{3.6}
$$

However, elliptical lift distributions aren't always the case. Therefore, the span efficiency factor e (also sometimes called Oswald factor) has been defined, such that:

$$
C_{D,i} = \frac{C_L^2}{\pi A e} \tag{3.7}
$$

Now let's calculate the total drag coefficient for the wing. We don't know the induced drag for supersonic speeds, so for (low) subsonic speeds, the following equation holds:

$$
C_D = c_{d,profile} + \frac{C_L^2}{\pi eA} = c_{d,f} + c_{d,p} + \frac{C_L^2}{\pi eA}
$$
\n(3.8)

4 Slope of the $(C_L - \alpha)$ curve

For 2D wings, the slope of the $(C_L - \alpha)$ curve is $\frac{dC_L}{d\alpha} = a_0$. This is not the case for 3D wings. Now the relation $\frac{dC_L}{\alpha_{eff}} = a_0$ holds. Using equations 3.1 and 3.3 (the latter with a new span effectiveness factor e_1), and solving it for C_L gives the following relation:

$$
a = \frac{a_0}{1 + \frac{57.3a_0}{\pi e_1 A}}
$$
(4.1)

 e_1 is in theory a different factor than e, but in practice they are approximately equal. The factor 57.3 is in fact $\frac{180}{\pi}$, a conversion factor that was used to convert α_i to radians in the derivation of this formula.