Drag and 3D wings

1 Definitions

 $D_{profile} = Profile drag(N)$ $D_{friction} =$ Friction drag(N) $D_{pressure} = \text{Pressure}(N)$ $c_{d,profile} =$ Profile drag coefficient for unit length (dimensionless) $c_{d,f}$ = Friction drag coefficient for unit length (dimensionless) $c_{d,p}$ = Pressure drag coefficient for unit length (dimensionless) $D_{wave} = \text{Wave drag}(N)$ D = Total drag(N) $c_{d,w}$ = Wave drag coefficient for unit length (dimensionless) $c_d = \text{Drag coefficient for unit length (dimensionless)}$ $\alpha = \text{Angle of attack (deg)}$ $\alpha_{eff} = \text{Effective angle of attack (deg)}$ $\alpha_i =$ Induced angle of attack (rad) $D_i =$ Induced drag (N)L = Lift(N) $C_L = \text{Lift coefficient (dimensionless)}$ A = Aspect ratio (dimensionless)b = Wing span(m)c =Wing chord length (m)

$$S =$$
Wing area (m^2)

 q_{∞} = Dynamic pressure in free-stream ($Pa = N/m^2$)

e = Span effectiveness ratio (sometimes also called Oswald factor) (dimensionless)

2 Drag types for 2D airfoils

There are three important types of drag in aerodynamics. Skin friction drag has already been discussed in a previous chapter, and so does pressure drag due to flow separation. Together these two types of drag form the profile drag. In formula:

$$D_{profile} = D_{friction} + D_{pressure} \tag{2.1}$$

$$c_{d,profile} = c_{d,f} + c_{d,p} \tag{2.2}$$

But there is another type of drag, called wave drag. This is caused by shock waves, which are caused by supersonic velocities. So the total drag is:

$$D = D_{wave} + D_{profile} = D_{wave} + D_{friction} + D_{pressure}$$
(2.3)

$$c_d = c_{d,w} + c_{d,f} + c_{d,p} \tag{2.4}$$

3 Induced Drag

Induced drag doesn't occur in 2-dimensional airfoils. In 3-dimensional airfoils it does appear. And since airplanes have 3-dimensional airfoils, it plays an important role. It usually occurs that the local flow direction of the air differs from the relative wind. Therefore the effective angle of attack α_{eff} is smaller than the geometric angle of attack α . Their difference is α_i , the induced angle of attack. In formula:

$$\alpha_i = \frac{\pi}{180} (\alpha - \alpha_{eff}) \tag{3.1}$$

Note that a conversion factor is necessary. This is because α_i is in radians (this is necessary for equation 3.3), while the normal angle of attack is in degrees.

Geometrically it can be shown that:

$$D_i = L\sin\alpha_i = L\alpha_i \tag{3.2}$$

The latter part of the equation is an approximation, since α_i is very small, and therefore $\sin \alpha_i \approx \alpha_i$. For elliptical lift distribution, which is often approximately the case for airplanes, the following formula is true for incompressible flows:

$$\alpha_i = \frac{C_L}{\pi A} \tag{3.3}$$

Where the aspect ratio A is equal to the 'slenderness' of the wing $\frac{b}{c}$. However, c is not constant along the wing, so aerodynamicists therefore have defined the aspect ratio as:

$$A = \frac{b^2}{S} \tag{3.4}$$

Combining previous equations results in:

$$D_i = L \frac{C_L}{\pi A} = q_\infty S \frac{C_L^2}{\pi A} \tag{3.5}$$

So now the induced drag coefficient can be found:

$$C_{D,i} = \frac{C_L^2}{\pi A} \tag{3.6}$$

However, elliptical lift distributions aren't always the case. Therefore, the span efficiency factor e (also sometimes called Oswald factor) has been defined, such that:

$$C_{D,i} = \frac{C_L^2}{\pi Ae} \tag{3.7}$$

Now let's calculate the total drag coefficient for the wing. We don't know the induced drag for supersonic speeds, so for (low) subsonic speeds, the following equation holds:

$$C_D = c_{d,profile} + \frac{C_L^2}{\pi eA} = c_{d,f} + c_{d,p} + \frac{C_L^2}{\pi eA}$$
(3.8)

4 Slope of the $(C_L - \alpha)$ curve

For 2D wings, the slope of the $(C_L - \alpha)$ curve is $\frac{dC_L}{d\alpha} = a_0$. This is not the case for 3D wings. Now the relation $\frac{dC_L}{\alpha_{eff}} = a_0$ holds. Using equations 3.1 and 3.3 (the latter with a new span effectiveness factor e_1), and solving it for C_L gives the following relation:

$$a = \frac{a_0}{1 + \frac{57.3a_0}{\pi e_1 A}} \tag{4.1}$$

 e_1 is in theory a different factor than e, but in practice they are approximately equal. The factor 57.3 is in fact $\frac{180}{\pi}$, a conversion factor that was used to convert α_i to radians in the derivation of this formula.