
Basics of Inviscid Incompressible Flows

1 Bernoulli’s equation

An incompressible flow is a flow where the density ρ is constant. Let’s assume we’re dealing with an
incompressible flow. From the momentum equation and the streamline condition, we can derive that

dp = −ρV dV. (1.1)

This equation is called Euler’s equation. Since the streamline condition was used in the derivation, it
is only valid along a streamline. Integrating the Euler equation between point 1 and point 2 gives
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2 . (1.2)

In other words, p+ 1
2ρV

2 is constant along a streamline.

An inviscid flow is a flow without friction, thermal conduction or diffusion. It can be shown that inviscid
flows are irrotational flows. For irrotational flows p+ 1

2ρV
2 is constant, even for different streamlines.

2 Continuity equation

In a low-speed wind tunnel the flow field variables can be assumed to be a function of x only, so A = A(x),
V = V (x), p = p(x), etcetera. Such a flow is called a quasi-one-dimensional flow. From the continuity
equation can be derived that

ρ1A1V1 = ρ2A2V2, (2.1)

for two points in the tunnel. This applies to both compressible and incompressible flows. If the flow
becomes incompressible, then ρ1 = ρ2. The equation then reduces to A1V1 = A2V2. If we combine this
with Bernoulli’s equation, we find
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3 Dynamic pressure

The dynamic pressure is defined as

q =
1
2
ρV 2. (3.1)

Let’s suppose that the velocity at some point 0 is zero (V0 = 0). If the flow is incompressible, it follows
that

p1 +
1
2
ρV 2

1 = p0 ⇒ q1 = p0 − p1. (3.2)

Note that this follows from Bernoulli’s equation. If the flow is compressible, Bernoulli’s equation is not
valid and thus p0 − p1 6= q1.

4 Pressure coefficient

The pressure coefficient Cp is defined as

Cp =
p− p∞
q∞

, (4.1)
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where q∞ = 1
2ρ∞V

2
∞. The ∞ subscript denotes that the values are measured in the free stream, as if

being infinitely far away from the examined object. For incompressible flows, Cp can also be written as

Cp = 1−
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V
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)2

. (4.2)

5 Laplace’s equation

If the flow is incompressible, it follows from the continuity equation that

∇ ·V = 0. (5.1)

If the flow is also inviscid, and thus irrotational, it follows that ∇×V = 0. It also implicates that there
is a velocity potential φ such that V = ∇φ. Combining this with equation 5.1 gives

∇ · (∇φ) = ∇2φ = 0. (5.2)

This simple but important relation is called Laplace’s equation. It seems that the velocity potential
satisfies Laplace’s equation. But what about the stream function? We can recall from the previous
chapter that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (5.3)

We can also remember the irrotationality condition, stating that ∂v
∂x −

∂u
∂y = 0. Inserting 5.3 in this

condition gives
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 ⇒ ∇2ψ = 0. (5.4)

So the stream function ψ also satisfies Laplace’s equation, just like the velocity potential function φ.

6 Applying Laplace’s equation

Note that the Laplace equation is a linear partial differential equation. So if we find multiple solutions
φ1, . . ., φn for it, then any linear combination φ = c1φ1 + . . . + cnφn is also a solution. So if we find
a couple of basic solutions to Laplace’s equation, and if we add them up in just the right way, we can
display any inviscid incompressible flow.

But how do we know how to put the independent solutions together? We have to make use of boundary
conditions. First, there are the boundary conditions on velocity at infinity, stating that, at
infinity,

u =
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∂x
=
∂ψ

∂y
= V∞, v =

∂φ

∂y
= −∂ψ

∂x
= 0. (6.1)

There are also the wall boundary conditions. The flow can not penetrate an airfoil. So the velocity
at the airfoil edge is directed tangentially. This can be expressed in many ways. If n is the normal vector
at the airfoil surface, then V ·n = (∇φ) ·n = 0. This is called the flow tangency condition. But since
the airfoil edge is a streamline itself, also ψsurface = constant.

If we are dealing with neither φ or ψ, but rather with u and v themselves, things are different. If the
shape of the airfoil is given by yb(x), then

dyb

dx
=

( v
u

)
surface

. (6.2)

With those boundary conditions, we can put the elementary solutions to Laplace’s equation together to
represent, for example, the flow over a cylinder or over an airfoil. All that is left now, is to find those
elementary solutions. That is the subject of the next chapter.
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