
Basic Concepts

In this summary we will examine compressible flows. But before we venture into the depths of the
aerodynamics, we will examine some basic concepts.

1 Basic Concepts of Gases

Usually the atoms in a gas exert forces on each other. If these intermolecular forces are negligible, we
are dealing with a perfect gas. For perfect gases the following equation of state is applicable:

p = ρRT, (1.1)

where p is the pressure, ρ is the density and T is the temperature. R is the specific gas constant.
Its value is R = 287J/kg K at standard sea-level conditions.

Every molecule in a gas has a certain amount of energy. The sum of all these energies is called the
internal energy of the gas. The internal energy per unit mass is called the specific internal energy
e. There also is the specific enthalpy h, defined as

h = e + pv, (1.2)

where v = 1/ρ is the specific volume. For a perfect gas, both e and h are functions of only the
temperature T . In fact, we have

de = cv dT and dh = cp dT, (1.3)

where cv and cp are the specific heat at constant volume and specific heat at constant pressure,
respectively. Often cv and cp also depend on the temperature T . If they can be assumed constant, then
the gas is called a calorically perfect gas. We then have

e = cvT and h = cpT. (1.4)

Let’s take a closer look at the variables cv, cp and R. There are relations between them. If we also define
γ = cp/cv, then it can be shown that

γ =
cp

cv
, R = cp − cv, (1.5)

cp =
γR

γ − 1
, cv =

R

γ − 1
. (1.6)

2 The First Law of Thermodynamics

Let’s consider a fixed mass of gas, called the system. The region outside the system is called the
surroundings. In between the surroundings and the system is the boundary. We can now state the
first law of thermodynamics, being

de = δq + δw. (2.1)

Here δq is the amount of heat added and δw is the amount of work done on the system.

Heat can be added and work can be done in many ways. In adiabatic processes no heat is added or
taken away from the system. In reversible processes things like mass diffusion, viscosity and thermal
conductivity are absent. Finally isentropic processes are both adiabatic and reversible.
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3 The Second Law of Thermodynamics

It is time to define the entropy s of a system. The second law of thermodynamics states that

ds ≥ δq

T
, (3.1)

where there is only equality for reversible processes. Furthermore, if the process is adiabatic, then δq = 0
and thus also

ds ≥ 0. (3.2)

If the process is both reversible and adiabatic, then ds = 0. The entropy is thus constant for isentropic
processes. (This also explains why these processes were named isentropic.)

Now let’s try to derive an equation for the entropy. We do this using the first law of thermodynamics.
For a reversible process it can be shown that δw = −p dv. Also we have δq = T ds. From this we can
find that

T ds = de + p dv = dh− v dp. (3.3)

We can combine the above relations with the equation of state and the relations for de and dh. Doing
this will eventually result in

s2 − s1 = cp ln
T2

T1
−R ln

p2

p1
= cv ln

T2

T1
+ R ln

v2

v1
. (3.4)

For isentropic processes we have ds = 0 and thus s2− s1 = 0. Using this fact, we can find the isentropic
flow relations, being

p2

p1
=

(
ρ2

ρ1

)γ

=
(

T2

T1

) γ
γ−1

. (3.5)

4 Compressibility

Let’s consider some substance. If we increase the pressure on it, its volume will decrease. We can now
define the compressibility τ as

τ = −1
v

dv

dp
. (4.1)

However, when the pressure is increased often also the temperature and the entropy increase. To erase
these effects, we define the isothermal compressibility τT and the isentropic compressibility τs as
the compressibility at isothermal and isentropic processes, respectively. In an equation, this becomes

τT = −1
v

(
∂v

∂p

)
T

and τs = −1
v

(
∂v

∂p

)
s

. (4.2)

But how can we use this? Using v = 1/ρ we can derive that

dρ = ρτdp. (4.3)

This equation helps us to judge whether a flow is compressible. A flow is incompressible when the
density stays (more or less) constant throughout the process. If the density varies, then the flow is
compressible. For low-speed flows dp is small, so also dρ is small. The flow is thus incompressible. For
high-speed flows the pressure will change a lot more. Therefore dρ is not small anymore, and the flow is
thus compressible.
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5 Stagnation Conditions

Let’s consider a flow with velocity V . If we move along with the flow, we can measure a certain static
pressure p. We can also measure the density ρ, the temperature T , the Mach number M , and so on. All
these quantities are static quantities.

Now let’s suppose we slow down the flow adiabatically to V = 0. The temperature, pressure and density
of the flow now change. The new value of the temperature is defined as the total temperature Tt. The
corresponding total enthalpy is ht = cpTt.

Using a rather lengthy derivation, it can be shown that the quantity h + V 2/2 stays constant along a
streamline, in a steady adiabatic inviscid flow. We therefore have

ht = h +
V 2

2
= constant. (5.1)

For a calorically perfect gas (with constant cp) we also have Tt = ht/cp = constant. Keep in mind that
this only holds for adiabatic flows.

We can expand this idea even further, if the flow is also reversible, and thus isentropic. In this case, it
turns out that the total pressure pt and the total density ρt also stay constant along a streamline.
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