
Basic Applications of Elementary Flows

1 Nonlifting flow over a cylinder

If we combine a uniform flow with a doublet, we get the stream function

ψ = V∞r sin θ − κ
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, (1.1)

where R2 = κ
2πV∞

. This is also the stream function for a flow over a cylinder/circle with radius
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The velocity field can be found by using the stream function, and is given by
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Note that if r = R, then Vr = 0, satisfying the wall boundary condition. At the wall also Vθ = −2V∞ sin θ.
This means that the pressure coefficient over the cylinder is given by
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)2

= 1− 4 sin2 θ. (1.4)

2 Nonlifting flow over a sphere

Let’s combine a uniform 3-dimensional flow with a 3-dimensional doublet. Let’s define R as

R = 3
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. (2.1)

Using the combined stream function, it can be shown that the velocity field is given by

Vr = −V∞ cos θ
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)
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)
, Vφ = 0. (2.2)

At the wall, the velocity is Vθ = 3
2V∞ sin θ. This means that the pressure coefficient over the sphere is

given by
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sin2 θ. (2.3)

3 Lifting flow over a cylinder

Let’s combine a nonlifting flow over a cylinder with a vortex of strength Γ. This results in a lifting flow
over a cylinder. The resulting stream function is
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From the stream function we can derive the velocity field, which is given by

Vr = V∞ cos θ
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)
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To find the stagnation points, we simply have to set Vr and Vθ to 0. If Γ
4πV∞R ≤ 1, then the solution is

given by

r = R, θ = arcsin
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)
. (3.3)

However, if Γ
4πV∞R ≥ 1, then the solution is given by
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At the surface of the cylinder (where r = R) is the velocity V = Vθ. Using this, the pressure coefficient
can be calculated. The result is

Cp = 1−
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)2

. (3.5)

Using this pressure coefficient, the drag coefficient can be found to be cd = 0. So there is no drag. Also,
the lift coefficient is

cl =
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RV∞
, (3.6)

where R = 1
2c. Now the lift per unit span L′ can be obtained from
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1
2
ρ∞V

2
∞2R = ρ∞V∞γ. (3.7)

This equation is called the Kutta-Joukowski Theorem. It states that the lift per unit span is directly
proportional to the circulation. It also works for shapes other than cylinders. However, for other shapes a
complex distribution of sources and vortices may be necessary, as is the subject of the following paragraph.

4 Source Panel Method

The source panel technique is a numerical method to use elementary flows. Let’s put a lot of sources
along a curve with source strength per unit length λ = λ(s). Such a source distribution is called a source
sheet. Note that λ can be positive at some points and negative in other points.

Now look at an infinitely small part of the source sheet. The source strength of this part is λ ds. So for
any point P , the contribution of this small source sheet part to the velocity potential is

dφ =
λ ds

2π
ln r, (4.1)

where r is the distance between the source sheet part and point P . The entire velocity potential can be
obtained by integrating, which simply gives

φ =
∫ b

a

λ ds

2π
ln r. (4.2)

In the source panel method, usually an airfoil (or an other shape) is split up in a number of small straight
lines for which the velocity potential is separately calculated and the boundary conditions are separately
applied.
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