Basic Applications of Elementary Flows

1 Nonlifting flow over a cylinder

If we combine a uniform flow with a doublet, we get the stream function
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where R? = s-v—- This is also the stream function for a flow over a cylinder/circle with radius
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The velocity field can be found by using the stream function, and is given by
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Note that if » = R, then V,. = 0, satisfying the wall boundary condition. At the wall also V = —2V, sin 6.
This means that the pressure coefficient over the cylinder is given by
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2 Nonlifting flow over a sphere

Let’s combine a uniform 3-dimensional flow with a 3-dimensional doublet. Let’s define R as
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Using the combined stream function, it can be shown that the velocity field is given by
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At the wall, the velocity is Vy = %VOO sin@. This means that the pressure coefficient over the sphere is
given by
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3 Lifting flow over a cylinder

Let’s combine a nonlifting flow over a cylinder with a vortex of strength I'. This results in a lifting flow
over a cylinder. The resulting stream function is

R? r r
= (Veorsinf) [ 1 — — —In—. 1
) (Vrsm)( T2)+27THR (3.1)
From the stream function we can derive the velocity field, which is given by
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To find the stagnation points, we simply have to set V,. and Vj to 0. If % < 1, then the solution is
given by
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However, if ﬁ > 1, then the solution is given by
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At the surface of the cylinder (where r = R) is the velocity V = V. Using this, the pressure coefficient
can be calculated. The result is
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Using this pressure coefficient, the drag coefficient can be found to be ¢4 = 0. So there is no drag. Also,
the lift coefficient is
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where R = %c. Now the lift per unit span L’ can be obtained from
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This equation is called the Kutta-Joukowski Theorem. It states that the lift per unit span is directly
proportional to the circulation. It also works for shapes other than cylinders. However, for other shapes a
complex distribution of sources and vortices may be necessary, as is the subject of the following paragraph.

4 Source Panel Method

The source panel technique is a numerical method to use elementary flows. Let’s put a lot of sources
along a curve with source strength per unit length A = A(s). Such a source distribution is called a source
sheet. Note that A can be positive at some points and negative in other points.

Now look at an infinitely small part of the source sheet. The source strength of this part is A ds. So for
any point P, the contribution of this small source sheet part to the velocity potential is
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where r is the distance between the source sheet part and point P. The entire velocity potential can be
obtained by integrating, which simply gives
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In the source panel method, usually an airfoil (or an other shape) is split up in a number of small straight
lines for which the velocity potential is separately calculated and the boundary conditions are separately
applied.



